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Abstract— The rise of a buoyant plume into atmospheric inversions is investigated analytically for a range of

inversion rates. The analysis assumes gaussian distribution of velocity and temperature. The results show

that maximum plume rise decreases with inversion intensity, and the ratio of maximum rise to the height at
which zero buoyancy occurs is a function of the densimetric froude number and the inversion intensity.

NOMENCLATURE
a, 5.729 plume profile parameter;
b(z), plume radius;
¢, atmospheric inversion parameter [K];

Fr,  u/gb(0)B initial densimetric Froude number;
local densimetric Froude number;

d, gravitational constant;

ip similarity variable,i = 1,2,3,j = 1,2;
atmospheric pressure;

9 radial heat transfer;

r, radial coordinate of plume;

R,  gasconstant;

R, b(z)/b(0) dimensional radius;

S, atmospheric inversion parameter;

T, temperature;

u(r, z), plume axial velocity;

ug,  u(r=290,z);

U, U(O, 0):

U, u(0, z)/u, dimensionless plume velocity;

V{r, z), plume radial velocity;

Vo vlb,z);

Ve, v(b,z)/u,dimensionless entrainment velocity;
Z, axial distance along plume;

Z,  dimensionless density variable, i = 1,2, 3.

Greek symbols
o, entrainment parameter;
a; components of entrainment parameter j
=123
B, 11— py, density difference;
2, density;

P air reference density;
1.,  turbulent shear stress distribution;

£, Z/b{0) dimensionless distance;

¢ p.—p(0,2) or (p.—p(0,2)/B;

7, r/b(z) dimensionless radial variable.
Subscripts

i, ground level;

e, ambient condition;

D, plume.

1. INTRODUCTION

INTEREST in the maximum plume rise, and buoyant
plume entrainment has increased recently as the

403

atmosphere is being considered as the ultimate heat
sink for process, thermal and nuclear power plants.
The heights to which plumes rise determine the extent
and range of effluent dilution. In the case of liquid
laden plumes, the dispersion of plumes determines the
extent of misting and reprecipitation of moisture to
ground level. The rise of gaseous plumes from dry
cooling tower stacks have been studied as a model for
understanding the rise and spread of moisture laden
plumes of wet cooling towers. On account of the
tendency for recondensation and misting in a wet
plume, any reduction in its overall rise is undesirable
from an environmental point of view. Since entrain-
ment influences the thermal energy of the plume, it will
be instructive to investigate the entrainment character-
istic of a dry plume, and to observe the effect of
inversion intensity on the overall plume rise.

Morton, Taylor and Turner [1] proposed that the
entrainment velocity of a plume is proportional to the
axial core velocity u(r = 0, z), with the proportionality
variable being constant. Briggs [2], following an
extensive literature survey, proposed that the entrain-
ment velocity is proportional to the square root of the
axial momentum flux u?b?, and the proportionality
variable, o, is constant. In the analytical study by Fox
[3], it was shown that the parameter « is related as o
= &, +0,/Fr} in which o, and «, are constants, and
Fr, is the local densimetric Froude number. Although
Fox’s model is in agreement with [1], his expression
for the densimetric Froude number leads to imaginary
numbers in the regions of negative buoyancy. The
analysis by Fox established the occurrence of outflow
from the plume; extending his result into the negative
buoyancy region is questionable since Fr; is negative
there. The differences in the existing models may be
identified with the closure of the governing equations.
In [1], no closure was necessary, the relationship
between entrainment velocity and u(r = 0,z) was
assumed explicitly. In [3], the turbulent shear stress
was prescribed independently, thus yielding a free
parameter that was determined empirically.

The objective of this study is to investigate the rise of
a dry buoyant plume subject to the conservation of its
mechanical energy. The closure based on the con-
servation of mechanical energy makes the system of
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governing equations internally consistent. As in pre-
vious studies, it is assumed that the flow is axisym-
metric, turbulent and steady in the mean [4,5]. The
plume is nominally compressible, and perfect gas
relations are assumed.

2. ANALYSIS
The governing equations are

Continuity

2 or, i( =0 1
5 PV + o (pru) = 1)

Momentum
i (orV,u) + i (pru?)
or provi 0z pre

o
= (p.~p)gr + P () ()
r

Energy

0 d 0
" (orVc, T) + 35 PrHcs T)= P (rg) ()

Closure

a( V2)+6( %)
— — (pru
or privi 0z r

G,
= 2u(pe - p)gr +2u a—- (rtrz) (4)
r

Equation of State
P(r,z) = p(r,2)R,T(r,2) ®)

where ¥, and u are the radial and axial velocity
components in the plume, p, is ambient air density, p is
the plume density, 7,, the effective shear stress, g, the
turbulent heat transfer in the radial direction, r and z
are the radial and axial coordinates of the plume.
Equation (4) is the closure equation obtained by
multiplying equation (2) with u(r,z) and using the
continuity equation to simplify the analysis.

The condition of atmospheric inversion is assumed
to be in the form

T.(z) = T +cz (6)

in which T is the ambient air temperature at the plume
source, and C is the atmospheric inversion rate, with ¢
> 0. From equations (5) and (6) the atmospheric
pressure and density variation may be obtained as

cz\ e Ry
P(z) = P,(l + 71:> M
1
cz —gleRg—1
pe(2) = Pz(l + -7’:> . ®)
i

There are thus seven unknown variable p, V,, u, T, P,
T,., and ¢, in the governing equations. Equations
(1)—(8) supply the seven independent equations ne-
cessary for determining the dependent variables. The
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model is thus well posed, and a solution will now be
obtained.

It is reasonable to assume that the velocity and
density profiles within the plume are similar. This
assumption which is valid for the incompressible flow
[4] is expected to hold for a buoyant plume since the
maximum temperature defect, occurring at the source,
is normally small.

Experimental studies on buoyant plumes confirm
the validity of assuming similarity profiles. As with
Fox [3] and others [6] it will be assumed that the
velocity and density profiles can be written in the form

u(r,z) = uge " ©)
Pe—,D(l‘ = O,Z) = d)(z) e_“'llr’iz (10)

where ¢ is the axial density difference, and 4 is a
dispersion parameter. Experiments [7] have shown
that the temperature or density profiles are not
generally confined within the limits of the plume. In the
study by Fox [3], it was found that experimental data
could be correlated with 0.8 <1 < 1.2. It will be
assumed in this study that A = L.

On integrating equations (1)—(4) with respect to r
from r =0 to r = b(z), the following equations are
obtained.

d
a;[bzuo(l’elu_lud))] = p bV, (11)
d 2,2 2
&[b uglpdy —1,9)] = ¢pb*gl, (12)
d
—~(Peb2u0) = P.bV,/1, (13)
dz
d 2,3
a—z[b ug(poI3, —I3,0)]
1d
=A,b*uodgly, + Ayp b*ug (‘ ﬂ)
uy dz
+0(8,S) (14)

where V, is the entrainment velocity, and the similarity
variables I, j = 1,2,3,k = 1, 2 are given by

1
Iy, =J‘ ﬂe_mz dy

0

1
Ia=1,, = e~ 2’ g
12 21 J; n n (15)

1
I =15 =I "Ie-am'2 dy
0

I, = jl ne *™idy
0
and
A = (e °—e"?*)/a+(0.1667—0.5¢ " *
+0.5e 724~ 0.1667 e 7391, /I,

Ay = 0.1667—05¢72040.333¢ %, (16)
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The dimensionless form of equations (11)—(14) is

d
— (R*UZ)) = p,RYV,

T (17)
i 2772 _ﬁl_ 2
& (R*U*Z,y) = a0 R%¢ (18)
d
— (PeR*U) = PeR%V,/I,, (19)

d¢

d
i (R2U3Z,;) = A,¢R*U/Fr?

1dU
+A4,0, R ——) (20
U d¢

where the initial Froude number, Fr, and the density
variables z;, j = 1, 3 are defined by

Fr = u/(gb(0)B)'*
Zj = ptel —d)BIjZ’ ] = 1925 3.

The entrainment velocity is eliminated from the
continuity and energy equations to obtain

1)
(22)

d
E (R2U¢@) = 1,,SR2U/(I1,,p).

The system of governing equations thus reduces to
three simultaneous nonlinear differential equations
(18), (20) and (23), and are subject to the initial
conditions specified at the plume source

at & =&, (R*U?Z,)o =2,
(RZUSZO)O = Zs|o
(RZUd’)o =1

(23)

(24)

Under Boussinesq approximations, the Z; j = 1,3
on the LHS of equations (17)—(20) are generally
[1,3,6] replaced with p,I;. While this step simplifies
the analysis, it leads to the loss of valuable information.
Equation (18) can be easily reduced to the form

d 1,, R I, 1dU
— (pR2U?) = L —— + 22 BeRU — —
a PRV =T+ b U d¢
1,1
+ 1112223R2U (25)

21

which shows the effect of buoyancy and atmospheric
inversion on the apparent momentum flow. Under
Boussinesq approximation p, is commonly replaced
with p,, and the last two terms in equation (25) are
dropped. In zero buoyancy flow, in a stably stratified
atmosphere, equation (25) preserves the influence of
stratification. In addition, it may be noted that the first
and second terms on the RHS of equation (25)
counteract each other throughout the plume motion.
Initially 0 < ¢ < 1, and du/d¢ is negative everywhere;
in the negative buoyancy zone, ¢ < 0, the signs of these
terms are reversed. For the reasons stated above, the
Boussinesq approximation will not be used in this
study.

The incompressible limit of the governing equations
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is obtained when ¢ is set equal to zero, or when the
densimetric Froude number becomes large. One infers
from these limiting extremes that the plume motion is
momentum dominated. The above reasoning allows
the variable 1/U dU/d¢ to be estimated from existing
solutions of the incompressible flow.

Further insight into the variation of the entrainment
velocity, V,, is gained by expanding equation (17) and
using equation (23) to simplify the result.

VE=I“(0(1+0(2/Fr42,+0(3)RU (26)
where
(122 B ) 1dU
a =2 1) =—
I3 pe U d¢
1
o, = = Sgn(¢)
Iy
-
? Iy I./)1y;
and

Fr, = Fr(p,U%/|l)'".

Thus the entrainment velocity varies as the square
root of the local momentum flow R2U2. This is the
conclusion reached by Briggs from an extensive litera-
ture review. The entrainment parameter may now be
written as

a = oy +0y/Fri+as. 27N

The corresponding expression obtained by Fox can be
written as

a = 0.0535+0.25/Fr2, (28)

Comparison of equations (27) and (28) suggests «, or
(o, +o3) is a constant. Equations (26) show that «,
varies as 1/U dU/d¢ while a, varies as the stratification
parameter.

3. CONSTRAINTS ON THE
ENTRAINMENT PARAMETER

The components of the entrainment parameter a;,
= 1,2,3 show that « is a function of the buoyancy
parameter ¢, the ambient fluid density p,, and the
stratification parameter, S. In the initial phase of the
plume motion, 0 < ¢ < 1, the influence of the flow
parameters Fr, § and S may be investigated for this
phase of the plume motion. For large Froude numbers,
Fr, or a small density difference f ~ 0, equation (26)
can be approximated as

1dU

T
These limits correspond to the incompressible flow
situation, and Hinze’s [4] similarity solution can be
used to show that

o =

(29)

_ 1
h E+&o

where ¢, is the virtual origin. From available analyti-

£E=0

oy
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cal and experimental studies, 12 < &, < 16. Thus at &
= 0,0, = 0.0714 assuming &, = 14.

The influence of the stratification parameter, S,
becomes significant when ¢ < 0, as o, and «, no longer
augment each other. Under Boussinesq approxi-
mation, a, is zero as is the density dependent term in
the a, expression. Equations (25) and (26) are the most
general expression for the entrainment parameter. It
may be noted in the foregoing that the entrainment
velocity V,, and o become negative only in the negative
buoyancy zone. A negative V, implies outflow from the
plume, hence the horizontal spreading out of the
plume structure observed in practice.

4. MAXIMUM PLUME RISE ANALYSIS
The assumption of similar profile cannot be expec-
ted to hold in the region of plume spread. The plume
has residual upward motion even after V, < 0. At the
onset of outflow, the plume radial velocity is zero
everywhere. In the region near the plume axis, equa-
tion (2) becomes

d _
L, (0.2)) =250 (30)
r
and in dimensionless form
d -
Syl Py 2 (31)
dé B p, Fr

Equation (31) is used in calculating the maximum
height ¢, at which the plume attains zero upward
mobility. The switch from equations (18), (20) and (23)
to equation (31) occurs at ¥, = 0.

5. RESULTS AND CONCLUSIONS
In this study, the numerical calculations were car-
ried out for values of the inversion parameters C = 1.0,
0.8, 0.6 and 0.4 degrees rise per unit of axial distance.
The height at which the plume begins to spread V, = 0,
is shown in Fig. 1. The ratio Z,/Z in Fig. 2 shows the
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ultimate plume rise compared to the height at which
neutral buoyancy occurs. Figure 3 shows the variation
of plume buoyancy and entrainment velocity with
plume rise, while the components of plume entrain-
ment parameter are shown in Fig. 4.

The plume rise results obtained in this study are in
good agreement with those of Brown and Sneck [6]
and Fox [3). Figure 4 shows that the total entrainment
parameter variation obtained in this study differs from
the result of Brown and Sneck, shown in Fig. 4. It can
be seen that both models predict the same total
entrainment of ambient atmospheric fluid. Given the
normally assumed small difference between the plume
and ambient temperatures, the effect of local variation
of entrainment is justifiably small.
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ASCENSION D'UN PANACHE THERMIQUE DANS UNE INVERSION ATMOSPHERIQUE

Résumé—On étudie par voie analytique I'élévation d’un panache thermique dans une inversion
atmosphérique pour plusieurs taux d’inversion. L'analyse suppose une distribution gaussienne de vitesse
et de température. Les résultats montrent que le niveau maximal atteint par le panache décroit avec
I'intensité de l'inversion, et que le rapport du niveau maximal & la hauteur pour laquelle les forces
d’Archiméde s’annulent est une fonction du nombre de Froude et de I'intensité de I'inversion.

DAS AUFSTEIGEN VON AUFTRIEBSSTROMUNGEN IN ATMOSPHARISCHE
INVERSIONSSCHICHTEN

Zusammenfassung— Das Aufsteigen einer Auftriebsstromung in atmosphdrische Inversionsschichten wird

fiir verschiedene Inversionsraten analytisch untersucht. Die Studie geht von einer Gauss’schen Verteilung

von Geschwindigkeit und Temperatur aus. Die Ergebnisse zeigen, daBl die maximale Aufstiegshohe mit

der Inversionsintensitdt abnimmt, und daB das Verhiltnis der maximalen Aufstiegshdhe zur Hohe, bei der

der Auftrieb Null wird, eine Funktion der mit den Dichteunterschieden gebildeten Froude-Zah! und der
Inversionsintensitdt ist.

BO3HUMKHOBEHUE BCILJIbIBAIOUIMX CTPYI
NMPU ATMOCOEPHBIX UHBEPCUSAX

Aunnotauus — Mccnenyercs aHajMTHYECKH BO3HMKHOBCHHME BCNUIBIBAIOWIEH CTPYM NPH WHBEPCHH B

aTMochepe AN pa3nHyHbIX Ko3bduLmMeHToB uHBepcnu. Tlpu aHanuse nenaeTcs NOMyLIEHHE O rayc-

COBOM DacnpelesiCHHH CKOpPOCTell M TeMmnepaTyp. Pe3ynbTaThl nOKa3biBalOT, YTO MaKCHMAaJIbHBIH

NOBbEM BCIILIBAIOLIEH CTPYH YMEHBIUAETCS ¢ YMEHBLICHHEM HHTEHCHBHOCTH HWHBEPCHHM, a OTHO-

IEHHEe MAaKCHMAJIbHOTO MOABEMA K BLICOTE, NIPH KOTOPOH OTCYTCTBYET NOAbEMHAS CHNA, 3aBUCHT
OT JEHCHMETPHYECKOro uncna Ppyna U BESTMYHHBI HHBEPCUM.



